
/***

* Git and Github – Command

***/

$ git –version

$ git init -- Creates a repository and a .git folder. Doesn't perform the initial commit.

$ git log -- Shows log on currently checked out branch.

$ git log <branch>|<remote>/<branch> -- Shows log on <branch>.

$ git log -n 1 -- Show n commits.

$ git log --stat -- Show filename in each commit + number of changes in each file.

$ git log --name-only -- Show filename in each commit.

$ git log --graph <branch_1> <branch_2> -- Show branches visually. Try adding a --oneline to make it easier to read.

 -- You can graph more than two branches (if you like).

$ git diff <older_id> <newer_id> -- Difference between commits <older_id> and <newer_id>.

$ git diff -- Difference between the Working directory and Staging area.

$ git diff --staged -- Difference between the Staging area and Repository.

$ git show -- Diff last commit with its parent

 -- (Please note: PARENT!!!, not necessarily the commit prior to the one you are interested in -

 -- think merging!).

$ git show <commit_id> -- Diff between <commit_id> and its parent (Please note: PARENT!!!, see above for details).

$ git reset --hard -- Revert changes in Working directory and Staging area. Irreversible change!!!

$ git reset <file> -- Removed file from staging. Changes are kept.

$ git clean -f -- Remove EVERYTHING, including untracked files (e.g., new files, generated files)

$ git clean -f -X -- Remove EVERYTHING, including ignored and untracked files (e.g., new files, generated files)

$ git revert -n <commit_id> -- Revert, but keep in Working Copy (do not commit reverted version automatically).

$ git revert -m 1 <commit_id> -- Revert a merge commit. Reverts all commits that were part of that merge.

 -- You can't revert a merge commit if you used fast-forward commit.

$ git branch -- View branches on the current repository.

$ git branch <name> -- Create new branch (this branch will not be checked out automatically) on the current

 -- repository, from the current HEAD. It essentially labels the current head with <name>.

$ git branch -d <branch_name> -- Create a branch from detached HEAD. It is the same thing as doing the following set of

 -- commands:

 -- $ git branch <new_branch_name>

 -- $ git checkout <new_branch_name>

$ git merge <branch_1> <branch_2> ... -- Merge specified branches into currently checked out branch.

$ git merge --abort -- Revert branches to state before the merge. Useful if you have a merge conflict.

$ git checkout -b <name> <from_branch> -- Create new branch and check out automatically.

$ git checkout <commit_id> -- Use an older commit (detached HEAD state).

$ git checkout master -- Use last commit as HEAD.

$ git checkout -b <name> -- Use with detached HEAD state, in a situation where you added new commits to the

 detached HEAD and now want to make it into a new branch.

$ git stash -- Git moves uncommited changes along when you switch branches. If you want to "save" the

 -- changes without committing them,

$ git stash pop -- you have to stash them. Once you're done working on the other branch, you can retrieve the

 -- changes. If you have created new files (but haven't committed them yet), you must first stage

 -- them before you can stash them.

$ git rc -- Garbage collection (removing deleted branches whose commits have not been merged and

 -- are therefore unreachable).

Committing process.

$ git status -- 1. Shows current branch working directory and staging area,

 -- changed files, latest commit, untracked files. Also shows if there is any difference

 -- in number/status of commits between local repo and repo on GitHub.

$ git add <filename> -- 2. Add file to Staging area.

$ git diff -- 3. Difference between the Working directory and Staging area.

$ git commit -- 4. Commits to repository. If a branch is checked out, it will commit to that branch.

Merging process

$ git checkout <branch> -- 1. checkout <branch> you want to merge into.

$ git merge --no-ff <branch_1> -- 2. merge the branche into the checked out branch.

$ -- 3. resolve conflicts by opening the conflicted file. 3 sections:

 -- <<<<<<< HEAD <branch we're merging into>

 -- ||||||| merged common ancestor

 -- =======

 -- >>>>>>> master <branch we're merging from>

$ git add <files> -- 4. add files to Staging area.

 -- Conflict resolution is also signalled this way (no special "Resolved" option).

$ git rebase master -- Alternatively, you can rebase current branch on the tip of master.

Creating a repository on GitHub and connecting it with our local repo - first approach.

$ -- 1. Create a new repo on GitHub directly (via GitHub website).

 -- Give it any name, e.g. "reflections".

$ git init -- 2. Create a local directory and run this command in it.

$ git remote add <remote_repo_name> <url> -- 3. Add the remote repository (found in <url>) to the local repository

 -- and name it <remote_repo_name>. <remote_repo_name> is a way to reference

 -- the remote repo from within current local repository.

 -- <remote_repo_name> is usually "origin" if we have only one remote.

 -- Remote repo is a version/representation of the local project (repo),

 -- but stored on a server. When the branch is pushed, the remote repo is

 -- named same as the branch.

 -- For simplicity, use HTTPS!

$ git remote -- 4. View all remotes (created by you or by repository owner).

$ git remote -v -- 5. Check if URL was added correctly.

 -- Shows the URL you will fetch from and the URL you will push to.

Creating a repository on GitHub and connecting it with our local repo - second

approach

$ -- 1. Create a new repo on GitHub directly (via GitHub website).

 -- Give it any name, e.g. "reflections".

$ git clone <url> -- 2. Downloads a repository. It also sets up the remote to point to <url>.

Communicating with the repository

$ git push <target_remote> <branch_to_push> -- Push branch to remote. Branch on remote repo will have the same

 -- name as the local branch that was just pushed.

$ git pull <target_remote> <remote_branch> -- Pull commits from remote repo's <branch> to a local <branch> of the same name.

 -- e.g. $ git pull origin master -> local master

 -- Merge differences immediately.

 -- If local branch HEAD is an ancestor of new commits, then a "fast-forward

 -- commit" is done.

 -- If local branch HEAD is not an ancestor of new commits (local and

 -- remote branch have diverged,

 -- NO conflicting changes introduced), a new merge commit is created.

 -- Same as: (master)$ git fetch origin + git merge master origin/master

If local and remote repo have diverged and you are NOT aware of it!

$ -- See above about pulling. You will have to resolve and then proceed with staging

 -- and commiting.

 -- No big deal. Below is a more in-depth approach (same outcome).

If local and remote repo have diverged and you are aware of it!

(master)$ git fetch origin -- Pull commits from remote repo's branch with the same name as the local checked

 -- out branch:

 -- e.g. GitHub origin/master -> Local origin/master

 -- Updates local version of origin/<branch>. Does not affect your local <branch>,

 -- only the local origin/<branch>

 -- You can check log for your local origin/<branch> by doing $ git log

 -- origin/<branch>

 -- Does not merge local <branch> and origin/<branch>!

$ git merge master origin/master -- Merge. Might warn of a conflict.

$ code <conflicted_file> -- Edit conflicted file.

$ git add <conflicted_file> -- Signal conflict resolution by staging the file.

$ git commit -- Commit the resolved file.

Forking a repository on GitHub.

$ -- 1. Go to GitHub and press "Fork" (upper left corner).

$ git clone <url> -- 2. Download repo to local computer.

 -- Remote repo is already added, pointing to original repo on GitHub.

$ -- 3. Add collaborators: GitHub repo -> Settings -> Collaborators.

Pull request

$ -- A request towards someone (branch owner) to review and merge our branch.

 -- It can also be thought of as a "merge request".

 -- Every step is done on GitHub:

 -- 1. Choose a branch you want the Pull request to be created for.

 -- 2. Choose "Pull Request" option.

 -- 3. GitHub assumes you want the original repository (if you forked)

 -- to be the destination repo.

 -- Set base fork to be e.g. master.

 -- If the branch you are requesting to merge into has had additional commits

 -- that will cause a conflict, you will have to resolve this locally. Please consult

 -- the "Pull requests and conflicts" section further below.

/***

* Git and Github – Concepts

***/

Row width: 80. -- Try to keep row width to 80 chars, it helps Git visualize changes better.

Working directory --

Staging Area -- Contains a copy of your local repository. When you stage a certain change, it gets moved to this staged

-- copy. When you commit the staged change, it remains in the Staging area.

-- Commit makes the staged area and local repository equal.

Local repository --

Remote repository --

Reachability -- Each commit has a parent. Each commit stores its commit parent.

 -- When you commit, current head becomes the new commit's parent (head moves, of course).

 -- Log shows commits starting with the head and goes back to the first commit that does not

 -- have a parent (usually this is the initial commit). Commits in different branches are

 -- not visible from one another - this is what "reachability" means. When you do a commit

 -- from the detached head state and then checkout an existing branch, that commit is now

 -- lost, since it is not reachable from any of the current branches (to better visualize

 -- this: create a commit graph with two concurrent branches and a commit from some detached

 -- head. Now checkout one of the branches - there is no way for you to see that lost commit in

 -- logs and you cannot do a checkout using branch names - you can do a checkout if you

 -- remember the commit id).

HEAD -- Current commit. When you make a new commit, head is moved to this new commit.

Detached HEAD -- this means that we're looking at a commit that was not labeled with a branch name.

 -- We can create a branch from this using: git branch -d <branch_name>

Branch name -- A branch is actually a labeled commit. Head commit of a particular branch is the one

 -- that is labeled. If the head is the same commit that is labeled as branch, when you

 -- commit, the label moves to the new head.

 -- Commits themselved do not know anything about the branches they belong to.

Head and checkout -- When you do a checkout, you make some commit the new Head. Which commit? This depends: if you are

 -- checking out a branch, then the new head becomes the branch's head. If you do a checkout on a specific

 -- commit id, then that commit becomes the new head (detached HEAD state).

Merge branch -- Once one branch is merged into another, all the commits from the merged branch are visible in the main

branch. -- Merge process compares three commits: heads of both branches and their common parent.

 -- Merge and reachability: merge commit has two parents (one from each branch).

Cloning -- A Git concept. We can clone a remote repository (from GitHub url) to our local computer.

 -- We can clone a repo from a local computer as another (new) local repo.

Remote branch -- A branch created on the remote repository. We can do a checkout and use it as if it were a regular

-- branch.

-- Git stores locally state of all remote branches:<remote>/<branch>. Local Git stores last known position

-- (commit ID) and the repository. This way when you do a "git fetch", you get all the newest changes from

-- origin <branch>, but this does not affect your local <branch>, only local origin/<branch>.

-- State is updated everytime we push or pull.

Fast-forward merge -- Occur when one commit (the one with the branch tag) is the ancestor of another commit (the other

-- branch tag). When merging, if local branch HEAD is an ancestor of new commits, then a "fast-forward

-- commit" is done (no new commit). It simply moves the HEAD of the current branch.

-- It is easy to do a fast-forward merge when you first perform a rebase.

-- HOWEVER, if you merge on GitHub, it does create a new commit (even if the new commit wasn't

necessary).

Pull request -- A purely GitHub concept! Merging a pull request results in a new commit, even if a ff-commit would

have sufficed.

Pull requests and -- All such conflicts must be resolved LOCALLY. GitHub will notify you of conflicts, but it will not

-- conflicts resolve conflicts - you must pull conflicting branches and resolve locally. PLEASE CONSULT

-- POINTS BELLOW.

Pull request conflict -- Merging directly on GitHub is not allowed in such cases. Such conflict must be resolved locally.

 in your repo -- You must first merge master into branch LOCALLY. Then push (this updates the pull request).

 -- Only then can you merge the pull request directly on GitHub.

Pull request conflict -- So you have a fork and on it a branch - and want to do a pull request from the branch towards

-- fork's original repo, but there are conflicting changes present. You first create a new remote to point

-- repo to original repo, called "upstream". Checkout the master. Do a "$ git pull upstream/master" to

-- update the local master branch to the latest commit on the original repo. Merge master into branch.

-- Push branch (this updates the pull request as well). Your branch is now up-to-date with the

-- original repo's + it has your changes that you want to pull into original repo.

Rebase -- Useful for integrating smaller feature branches. For longer-running feature branches, use 3-way --no-ff

 -- merge commits.

Forking -- A purely GitHub concept! Cloning a repository directly on GitHub, under your own account.

 -- When you do a fork, it is customary to immediately create another branch. This way

 -- your master can be kept synchronized with the original repo and branch can be used for development.

 -- You fork directly via GitHub web UI.

Collaborators -- A purely GitHub concept! A list of people you allow psuhing to your repository.

 -- Settings -> Collaboration

